Ordered Ramsey Numbers of Small Graphs

Kevin Chang

MIT PRIMES
Under William Kuszmaul and Jacob Fox

May 20, 2016

GRAPHS AND 2-COLORINGS ON n VERTICES

2-COLORINGS CAN CONTAIN GRAPHS

RAMSEY NUMBERS

Definition

The Ramsey number $R(G)$ of a graph G is the first n such that all 2-colorings on n vertices contain G.

Example: $R(\Delta)=6$.

RAMSEY NUMBERS

Definition

The Ramsey number $R(G)$ of a graph G is the first n such that all 2-colorings on n vertices contain G.

Example: $R(\Delta)=6$.

- All 2-colorings on ≥ 6 vertices contain Δ.

RAMSEY NUMBERS

Definition

The Ramsey number $R(G)$ of a graph G is the first n such that all 2-colorings on n vertices contain G.

Example: $R(\Delta)=6$.

- All 2-colorings on ≥ 6 vertices contain Δ.
- Not all 2-colorings on 5 vertices do:

RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

1. Results for classes of graphs

Example: For odd $n, R(n$ vertex cycle $)=2 n-1$.

RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

1. Results for classes of graphs

Example: For odd n, R (n vertex cycle $)=2 n-1$.
2. Results for specific small graphs

Example: R (diamond graph $)=10$

ORDERED GRAPHS AND 2-COLORINGS ON n VERTICES

Ordered graph Ordered two-coloring

ORDERED 2-COLORINGS CAN CONTAIN ORDERED GRAPHS

Ordered graph

$n=4$

Ordered two-coloring

$n=5$

Ordered Ramsey numbers

Definition

The ordered Ramsey number $R_{<}(G)$ of an ordered graph G is the first n such that all ordered 2-colorings on n vertices contain G.

Example: $R_{<}(1-2-3)=5$.

Ordered Ramsey numbers

Definition

The ordered Ramsey number $R_{<}(G)$ of an ordered graph G is the first n such that all ordered 2-colorings on n vertices contain G.

Example: $R_{<}(1-2-3)=5$.

- All ordered 2 -colorings on ≥ 5 vertices contain $1-2-3$.

Ordered Ramsey numbers

Definition

The ordered Ramsey number $R_{<}(G)$ of an ordered graph G is the first n such that all ordered 2-colorings on n vertices contain G.

Example: $R_{<}(1-2-3)=5$.

- All ordered 2 -colorings on ≥ 5 vertices contain $1-2-3$.
- Not all ordered 2-colorings on 4 vertices do:

Ordered Ramsey numbers are relatively new

Two natural directions of study:

Ordered Ramsey numbers are relatively new

Two natural directions of study:

1. Results for classes of graphs Example: There exists constant c such that for all ordered graphs H on n vertices,

$$
R_{<}(H) \leq R(H)^{c \log ^{2} n}
$$

Ordered Ramsey numbers are relatively new

Two natural directions of study:

1. Results for classes of graphs Example: There exists constant c such that for all ordered graphs H on n vertices,

$$
R_{<}(H) \leq R(H)^{c \log ^{2} n}
$$

2. Our Research Goal: Results for specific small graphs

OUR RESEARCH

We want to find the ordered Ramsey number of the standard ordering of the diamond graph $(D G)$.

WORK TOWARDS UPPER BOUND

Theorem

Theorem

SINGLE-VERTEX ANCHORING

Upper bound proofs for unordered Ramsey numbers often center around a particular vertex.

Example: $R(\triangle) \leq 6$

Single-vertex Anchoring

Upper bound proofs for unordered Ramsey numbers often center around a particular vertex.

Example: $R(\triangle) \leq 6$

Single-vertex anchoring

Upper bound proofs for unordered Ramsey numbers often center around a particular vertex.

Example: $R(\triangle) \leq 6$

SINGLE-VERTEX ANCHORING

Upper bound proofs for unordered Ramsey numbers often center around a particular vertex.

Example: $R(\triangle) \leq 6$

An IDEA FOR ORDERED RAMSEY NUMBERS: Two-vertex anchoring

To get bounds for ordered Ramsey numbers, we anchor our proofs at two vertices.

A LOWER BOUND

Theorem

$$
R_{<}(D G) \geq 12
$$

Using a computer to get a Lower bound

First, build a skeleton using two-vertex anchoring

Using a computer to get a Lower bound

First, build a skeleton using two-vertex anchoring

Using a Computer to get a Lower bound

 Next, fill in the rest of the two-coloring by force.Theorem

$$
R_{<}(D G) \geq 12
$$

Future work

- Tighten bounds and extend upper bounds to full ordering of DG.
- Find ordered Ramsey numbers of other small graphs.
- Find asymptotic growth rate of ordered Ramsey numbers of P_{n}^{k}, an important family of ordered graphs whose smallest interesting member is DG.

AcKnowledgments

- William Kuszmaul for providing so much valuable guidance and being an overall great mentor.
- Prof. Jacob Fox for suggesting the project and providing directions of research.
- MIT PRIMES for the opportunity to conduct this research.

REFERENCES

1. M. Balko, J. Cibulka, K. Král, and J. Kynčl. Ramsey numbers of ordered graphs. Electronic Notes in Discrete Mathematics, 49:419-424, 2015.
2. J. Bondy and P. Erdös. Ramsey numbers for cycles in graphs. Journal of Combinatorial Theory, Series B, 14(1):46-54, 1973.
3. V. Chvátal and F. Harary. Generalized Ramsey theory for graphs. ii. small diagonal numbers. Proceedings of the American Mathematical Society, 32(2):389-394, 1972.
4. D. Conlon, J. Fox, C. Lee, and B. Sudakov. Ordered Ramsey numbers. arXiv preprint arXiv:1410.5292, 2014.
