Ordered Ramsey Numbers of Small Graphs

Kevin Chang

MIT PRIMES Under William Kuszmaul and Jacob Fox

May 20, 2016

GRAPHS AND 2-COLORINGS ON n VERTICES

2-COLORINGS CAN CONTAIN GRAPHS

RAMSEY NUMBERS

Definition

The *Ramsey number* R(G) of a graph G is the first n such that all 2-colorings on n vertices contain G.

Example: $R(\Delta) = 6$.

RAMSEY NUMBERS

Definition

The *Ramsey number* R(G) of a graph G is the first n such that all 2-colorings on n vertices contain G.

Example: $R(\Delta) = 6$.

• All 2-colorings on ≥ 6 vertices contain \triangle .

RAMSEY NUMBERS

Definition

The *Ramsey number* R(G) of a graph G is the first n such that all 2-colorings on n vertices contain G.

Example: $R(\Delta) = 6$.

- All 2-colorings on \geq 6 vertices contain \triangle .
- ► Not all 2-colorings on 5 vertices do:

RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

1. Results for classes of graphs **Example:** For odd *n*, R(n vertex cycle) = 2n - 1.

RAMSEY NUMBERS ARE STUDIED EXTENSIVELY

Two natural directions of study:

- 1. Results for classes of graphs **Example:** For odd n, R(n vertex cycle) = 2n 1.
- 2. Results for specific small graphs **Example:** *R*(diamond graph) = 10

ORDERED GRAPHS AND 2-COLORINGS ON n VERTICES

ORDERED 2-COLORINGS CAN CONTAIN ORDERED GRAPHS

ORDERED RAMSEY NUMBERS

Definition

The *ordered Ramsey number* $R_{<}(G)$ of an ordered graph *G* is the first *n* such that all ordered 2-colorings on *n* vertices contain *G*.

Example: $R_{<}(1-2-3) = 5$.

ORDERED RAMSEY NUMBERS

Definition

The *ordered Ramsey number* $R_{<}(G)$ of an ordered graph *G* is the first *n* such that all ordered 2-colorings on *n* vertices contain *G*.

Example: $R_{<}(1-2-3) = 5$.

► All ordered 2-colorings on \geq 5 vertices contain 1 — 2 — 3.

ORDERED RAMSEY NUMBERS

Definition

The *ordered Ramsey number* $R_{<}(G)$ of an ordered graph *G* is the first *n* such that all ordered 2-colorings on *n* vertices contain *G*.

Example: $R_{<}(1-2-3) = 5$.

- All ordered 2-colorings on ≥ 5 vertices contain 1 2 3.
- ► Not all ordered 2-colorings on 4 vertices do:

ORDERED RAMSEY NUMBERS ARE RELATIVELY NEW

Two natural directions of study:

ORDERED RAMSEY NUMBERS ARE RELATIVELY NEW

Two natural directions of study:

1. Results for classes of graphs **Example:** There exists constant *c* such that for all ordered graphs *H* on *n* vertices,

 $R_{<}(H) \le R(H)^{c \log^2 n}.$

ORDERED RAMSEY NUMBERS ARE RELATIVELY NEW

Two natural directions of study:

1. Results for classes of graphs **Example:** There exists constant *c* such that for all ordered graphs *H* on *n* vertices,

$$R_{<}(H) \le R(H)^{c \log^2 n}.$$

2. Our Research Goal: Results for specific small graphs

OUR RESEARCH

We want to find the ordered Ramsey number of the standard ordering of the diamond graph (*DG*).

WORK TOWARDS UPPER BOUND

Theorem $R_{<}$ < 14Theorem ≤ 13 $R_{<}$

Upper bound proofs for unordered Ramsey numbers often center around a particular vertex.

Upper bound proofs for unordered Ramsey numbers often center around a particular vertex.

Upper bound proofs for unordered Ramsey numbers often center around a particular vertex.

Upper bound proofs for unordered Ramsey numbers often center around a particular vertex.

AN IDEA FOR ORDERED RAMSEY NUMBERS: TWO-VERTEX ANCHORING

To get bounds for ordered Ramsey numbers, we anchor our proofs at two vertices.

A LOWER BOUND

Theorem

$R_{<}(DG) \ge 12$

USING A COMPUTER TO GET A LOWER BOUND

First, build a skeleton using two-vertex anchoring

USING A COMPUTER TO GET A LOWER BOUND

First, build a skeleton using two-vertex anchoring

USING A COMPUTER TO GET A LOWER BOUND Next, fill in the rest of the two-coloring by force.

Theorem

 $R_{<}(DG) \ge 12$

FUTURE WORK

- Tighten bounds and extend upper bounds to full ordering of DG.
- ► Find ordered Ramsey numbers of other small graphs.
- ► Find asymptotic growth rate of ordered Ramsey numbers of P^k_n, an important family of ordered graphs whose smallest interesting member is DG.

ACKNOWLEDGMENTS

- William Kuszmaul for providing so much valuable guidance and being an overall great mentor.
- Prof. Jacob Fox for suggesting the project and providing directions of research.
- ► MIT PRIMES for the opportunity to conduct this research.

REFERENCES

- 1. M. Balko, J. Cibulka, K. Král, and J. Kynčl. Ramsey numbers of ordered graphs. *Electronic Notes in Discrete Mathematics*, 49:419–424, 2015.
- 2. J. Bondy and P. Erdös. Ramsey numbers for cycles in graphs. *Journal of Combinatorial Theory, Series B*, 14(1):46–54, 1973.
- 3. V. Chvátal and F. Harary. Generalized Ramsey theory for graphs. ii. small diagonal numbers. *Proceedings of the American Mathematical Society*, 32(2):389–394, 1972.
- 4. D. Conlon, J. Fox, C. Lee, and B. Sudakov. Ordered Ramsey numbers. *arXiv preprint arXiv:1410.5292*, 2014.